"Breakthrough" Earth-to-Orbit **Space Transportation Technologies**

15-25 vrs Momentum Transfer Tether Facility

Delta II ELV

Blast Wave Accelerator

Application Missions:

Metrics:

Flight Rate < 20/year

Robotic Missions to LEO

Cost \$7-10 K/pound

Cargo to LEO

\$100 - \$1000 / pound >100/year

Cargo and Spacecraft to LEO

< \$100 / pound >1000/year

Objective:

100X reduction in cost of mass to orbit with high launch rate and sustainable systems

Leading Candidates with potential high payoff (further refinement required):

- **Blast Wave Acceleration**
- Tethers and Elevators
- **Pulse Detonation Wave**
- **High Energy Density Materials**
- Carbon nanotubes for structures and materials

Current Funding for Evolutionary RLV Technologies (source):

- FY'99 ~\$400M (R)
- FY'00 ~\$400M (R)

Current Funding for Revolutionary Technologies

• FY'99 ~\$1.5M (R)

Recommendation

Ramp up to \$50M/year over 2000 -2005, then upward to begin flight **experiments**

"Breakthrough" Space Transfer Technologies

15-25 yrs

Centaur Upper Stage

High Power Electric

Solar Sail

Application Missions:

Upper Stages for LEO-to-

Metrics:

Cost (price) Trip Time GEO and interplanetary

\$7000/pound Minimum energy transfers

Low-cost, continuous thrust robotic & human missions beyond LEO

10X cheaper 10X faster (nonmin. energy)

Continuous human & robotic exploration beyond LEO

Nuclear Thermal Rocket

100X cheaper up to 100X faster (nonmin. energy)

Leading Candidates with potential high payoff (further refinement required):

- Nuclear (Electric and/or Thermal)
- Chemical with inexpensive ETO-launched fuel
- **Tethers and Elevators**
- Mag Sails
- Solar Sails
- Minimagnetospheric Plasma Propulsion

Current Funding for NASA Space Transfer Technology Development* (source):

- FY'99 \$1M(R) <\$10M(S)
- FY'00 \$3M (R) <\$10M (S)

Recommendation

Ramp up to \$75M/year over 2000 -2005, then upward to begin flight **experiments**

* not including flight experiments

Commercial Impact of DPT-Recommended Breakthrough Technologies

Space Tourism

Space Business Park

- Truly low-cost access to space
 - Tourism to LEO and beyond
 - Space manufacturing
 - Lower cost and higher performance telecom
- Telepresence
 - Bringing space to people
- High strength-to-weight materials
 - strong, light-weight structures
 - super-strong materials for cars, boats, clothes, etc.
- Enabler for space solar power
 - Electrical energy without adding greenhouse gases to the atmosphere
- Satellite refueling
- Safe waste removal from the biosphere
- Biotech

Commercial Partnerships in Exploration

Commercial Space Launch

Toys and Entertainment

Hollywood

- Form partnerships with established and fledgling space launch companies to facilitate transfer and development of breakthrough technologies
- Provide significant new government incentives to space entrepreneurs (tax breaks, awards, etc.)
- Must work with entertainment industry from the start to bring the public with us in this new era of Exploration (IMAX, Nintendo, Hollywood, toy industry, etc.)
- Partner with industry for development and operation of interplanetary networks and advanced telecom
- Partner with industry, other government agencies for biotechnology and nanotechnology research and commercialization